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Monte Carlo simulations provide an indispensible model for solving radiative transport
problems, but their slow convergence inhibits their use as an everyday computational tool.
In this paper, we present two new ideas for accelerating the convergence of Monte Carlo
algorithms based upon an efficient algorithm that couples simulations of forward and
adjoint transport equations. Forward random walks are first processed in stages, each
using a fixed sample size, and information from stage k is used to alter the sampling
and weighting procedure in stage kþ 1. This produces rapid geometric convergence and
accounts for dramatic gains in the efficiency of the forward computation. In case still
greater accuracy is required in the forward solution, information from an adjoint simula-
tion can be added to extend the geometric learning of the forward solution. The resulting
new approach should find widespread use when fast, accurate simulations of the transport
equation are needed.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Monte Carlo (MC) simulations have provided a ‘‘gold standard” of computational support for many important problems of
science and engineering that are modeled using the radiative transport equation (RTE). However, when the method is con-
ventionally applied, according to the central limit theorem, the number of samples processed must be multiplied roughly a
hundredfold to gain a decimal digit of accuracy. This slow convergence has encouraged the use of faster, but sometimes con-
siderably less accurate methods (see [1–3]). Many applications areas that rely on transport models would benefit from the
availability of faster MC methods.

In this paper, we describe a new MC method, based on sequential application of correlated sampling [4,7], that achieves
geometric convergence for very general transport problems. Coupling such simulations of the RTE with simulations of an
adjoint RTE leads to an automated, highly efficient MC solution algorithm that ‘‘tunes” itself to the specific needs of each
RTE problem and requires minimal or no user intervention. In other papers, we will describe a similar algorithm based on
importance sampling [8–13,4,5] and we will establish the geometric convergence of each. Here we illustrate the power of
our new method by applying it to an example that represents a model tissue problem. Comparison of the numerical re-
sults with analytic solutions suggests that gains of computational efficiency by several orders of magnitude in comparison
with conventional Monte Carlo should be possible when the algorithms are optimized for more complex, practical
problems.
. All rights reserved.
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2. Forward and adjoint transport equations

The methods we describe in this paper can be applied quite generally to RTE problems involving full spatial, angular, en-
ergy and time dependence. However, to simplify both the notation and the exposition, we specialize here to time-indepen-
dent, single-speed radiation transport for which the accepted model is the integro-differential equation1
1 Her
kind of

2 Dua
X � $Wðr;XÞ þ rtðrÞWðr;XÞ ¼ rsðrÞ
Z

S2
Wðr;X0Þpðr;X X0ÞdX0 þ Qðr;XÞ; ð1Þ
where the integration is over the sphere of unit direction vectors, S2. Eq. (1) is assumed to be valid for all vectors r in the
interior of a closed, bounded subregion V of R3. The solution, Wðr;XÞ, describes the radiation intensity at any point ðr;XÞ
in the phase space C due to a radiation source Q internal to V. In this equation, the coefficient functions rtðrÞ;rsðrÞ and
pðr;X X0Þ characterize the physical transport, scattering and absorption of radiation in C. The RTE simply expresses a bal-
ance between radiation arriving at ðr;XÞ (the two terms on the right hand side) and removal (the two terms on the left hand
side). Arrivals are due either to the source Q or scattering from direction X0 to direction X while removal occurs by streaming
(pure transport), expressed by the gradient term, and through interactions at ðr;XÞ that produce either absorption there or
scattering away from X.

A unique solution Wðr;XÞ is assured for all r 2 V , X 2 S2 when the flux of radiation Wincðr;XÞ incident on oV from outside
of V is specified; that is, for unit directions X for which X � noV < 0, where noV is the unit outward normal vector on oV . As
discussed in [6, pp. 20–30], the solution Wðr;XÞ may then be expressed in terms of a volume Green’s function,
G½ðr;XÞ  ðr0;X0Þ�, and a surface Green’s function, GoV ½ðr;XÞ  ðroV ;X0Þ�:
Wðr;XÞ ¼
Z

V�S2
G½ðr;XÞ  ðr0;X0Þ�Qðr0;X0Þdr0 dX0 þ

Z
oV�S2

�

GoV ½ðr;XÞ  ðroV;X0Þ�WincðroV ;X0ÞdroV dX0 ð2Þ

and S2
� ¼ fX0 : X0 � noV < 0g;
where Qðr;XÞ is the volume source within V. The second term in Eq. (2) comes from the boundary condition
WðroV;X0Þ ¼ WincðroV ;X0Þ for roV 2 oV and X0 2 S2
�: ð3Þ
Introduction of one or more radiation detectors into the physical system is described by a response function Q �ðr;XÞ that
characterizes both the location and physical properties of the detecting instruments. This leads to an adjoint integro-differ-
ential equation
�r �XW�ðr;XÞ þ rtðrÞW�ðr;XÞ ¼ rsðrÞ
Z

S2
W�ðr;X0Þpðr;X X0ÞdX0 þ Q �ðr;XÞ; ð4Þ
whose solution can be interpreted as an importance function in the sense that it is proportional to the response of the detec-
tors from a unit source at ðr;XÞ [4,5,18]. It is also understood that the boundary condition satisfied by W� on oV is dual2 to
that specified for W. Thus, if the region external to V is either nonreentrant or a pure reflector, the boundary conditions for W�

will be dual to those for W (since then either the product WW� vanishes on oV or it satisfies a reflecting boundary condition
there). Also, if the boundary segments include points at which both partially reflecting and partially nonreentrant transmission
occurs (as is the case for light transport where the Fresnel and Snell’s laws are applicable), duality also holds, as was shown by
Aronson in [35]. The theory of reciprocity for the RTE makes it clear that either simulations of the forward equation, Eq. (1), or
the adjoint RTE, Eq. (4), may be used to estimate the response of the detector Q � due to the source Q, since this response can be
expressed equivalently as a linear functional of either solution:
Z

V�S2
Wðr;XÞQ �ðr;XÞdrdX ¼

Z
V�S2

W�ðr;XÞQðr;XÞdrdX: ð5Þ
Approximate solutions of Eq. (4) also play a crucial role in the variance reduction method known as importance sampling,
mentioned earlier.

The integro-differential RTE, Eq. (1), can be converted to an equivalent integral equation
Wðr;XÞ ¼
Z

V�S2
Wðr0;X0ÞKðr;X; r0;X0ÞdX0dr0 þ Sðr;XÞ ð6Þ
that is more directly linked to the MC probability model on which the simulation is based. The kernel K of (6) describes both
the scattering and the transport of radiation and the source S is defined by moving particles from their point ðr;XÞ of orig-
ination (as determined by sampling Q) to their first collision location; details may be found in [4,5,18].

We introduce a new dependent variable
e and throughout the paper we will display only a single integral sign for all integrals, whether they are one- or multi-dimensional. The number and
integration variables and the region of integration are shown explicit to avoid possible ambiguity.
lity here means that the integral

R
oV�S2 noV �XWðr;XÞW�ðr;XÞdr dX ¼ 0.
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Cðr;XÞ ¼ Wðr;XÞW�ðr;XÞ ð7Þ
and call the product function C an information density function. In [29–33], this function is sometimes called a response or
contributon function, and it was used in the early literature to study RTE problems, mainly of nuclear radiation shielding type
– problems characterized by their focus on events with low probability outcomes in a simulation.

In the approach presented in this paper, we will use this function to capture the relative ‘‘information value” of points in
the phase space. The function Cðr;XÞ satisfies the RTE [30]
r �XCðr;XÞ þ Rsðr;XÞCðr;XÞ ¼
Z

S2
Rðr;X X0ÞCðr;X0ÞdX0 þ QW� � Q �W; ð8Þ
where
Rsðr;XÞ ¼
Z

S2
Rðr;X X0ÞdX0 ð9Þ
and
Rðr;X X0Þ ¼ rsðrÞpðr;X X0Þ W
�ðr;XÞ

W�ðr;X0Þ : ð10Þ
Eq. (8) is a radiative transport equation for C that couples the direct and adjoint solutions W;W�. The boundary conditions for
C follow from those that apply for W;W�. Thus, at a point of nonreentrant transmission clearly C ¼ 0 while at a point of pure
reflection, the normal derivative of C must vanish. The same argument applies if the boundary conditions include points at
which both reflection and nonreentrant transmission occur (as when light is refracted at the boundary).

Eq. (8) implies that there is no absorption of information density,3 only scattering, and that the scattering depends on both
the entering and outgoing directions (through the factor W�ðr;XÞ

W�ðr;X0 Þ). This is in contrast with most models of conventional RTE
problems for which the scattering is rotationally invariant and therefore depends only on the scalar product between the
two directions. Also, there is no loss of information density at the boundaries provided that the adjoint solution, W�ðr;XÞ,
satisfies boundary conditions that are dual to those satisfied by Wðr;XÞ, as we have assumed. Finally, there is both a source
density (in the term QW�) and a sink (in the term �Q �W).

Each source-detector pair identifies a unique contributon function Cðr;XÞ that characterizes the flow of information from
the source to the detector without any losses along the way. These observations will be utilized in the strategy we present
later for accelerating the convergence of MC simulations of the RTE.

3. First generation (G1) adaptive zero variance algorithms

In 1962, Halton [27] proposed using Monte Carlo algorithms to solve matrix problems by iteratively applying one of sev-
eral variance reduction methods, including correlated sampling. More recently, Halton’s ideas were extended to the solution
of continuous radiation transport problems by researchers at Los Alamos National Laboratory [14–17] and the Claremont
Graduate University [19–26]. The basic idea underlying these methods is to process the random walks in batches, called
stages, consisting of W independent random walks each and alter the sampling and weighting methods for each new stage
by incorporating information ‘‘learned” during the previous stage. It has been shown that these methods all produce geomet-
ric convergence [19–26], i.e.
Ek < kEk�1 < kkE0; 0 < k < 1 k ¼ stage number; ð11Þ
where Ek ¼ kth stage error; e.g. Ek ¼ kWðPÞ � bWðkÞðPÞk,4 where W = exact transport solution, bWðkÞ ¼ kth stage adaptive esti-
mate and k � k denotes an appropriate error norm.

These adaptive zero variance MC algorithms for global solutions of transport equations make use of expansions of either
the solution WðPÞ ¼

P1
i¼1aiBiðPÞ or the dual solution, W�, in orthonormal basis functions, BiðPÞ, and produce arbitrarily accu-

rate truncated solutions
bWðPÞ �XM

i¼1

aiBiðPÞ � WðPÞ ð12Þ
of W. This is done by estimating the first M expansion coefficients
ai ¼
Z

BiðPÞWðPÞdP; i ¼ 1; . . . ;M ð13Þ
s follows since the second term on the left-hand side of Eq. (8), which is the removal term due to either scattering or absorption, expresses just the
l due to scattering alone.
abbreviate the notation, we have set P ¼ ðr;XÞ.
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in adaptive stages of ever-increasing accuracy. Because each coefficient ai is just a weighted integral of the solution W, it is
readily estimated by conventional Monte Carlo methods. Further discussion of the algorithm employed can be found in the
Appendix, as well as in [22].

To understand how the information from stage k is linked to that in stage kþ 1, we outline our G1 method based on re-
peated use of correlated sampling (called Sequential Correlated Sampling or SCS). We introduce the linear integral operator
K defined by
5 Leg
defined
have als
basis fu
impract
KWðPÞ ¼
Z

C
KðP;P0ÞWðP0ÞdP0 ð14Þ
so that Eq. (6) becomes
WðPÞ ¼ KWðPÞ þ SðPÞ: ð15Þ
Next define a ‘‘reduced” source for the adaptive stage kþ 1 in terms of the reduced source at stage k by,
Sðkþ1ÞðPÞ ¼ SðkÞðPÞ þ K~wðkÞðPÞ � ~wðkÞðPÞ; Sð0ÞðPÞ ¼ SðPÞ; ð16Þ
where ~wðkÞðPÞ is the approximate correction obtained in stage k to the truncated solution (12).5 The algorithm suggested by
Eq. (16) is implemented by initiating random walks in adaptive stage k using the reduced source function SðkÞ and selecting all
subsequent collision sites using the continuous kernel K. The kth stage correction produced by this method decreases (with
probability 1) in magnitude as k increases. Proof of the geometric convergence of this method for the family of problems studied
in this paper is found in [23], while a detailed description of the algorithm was published in [22] and is also reviewed in the
Appendix.

These ‘‘first generation” (G1) adaptive methods and algorithms perform spectacularly well on RTE problems in a few inde-
pendent variables. We content ourselves here with illustrating this by solving a simply described family of model transport
problems in a homogeneous slab of finite thickness T which is infinite in extent in the other two dimensions. The resulting
problem, when further specialized to scattering that is either directly forward or backward, becomes tractable analytically
and therefore provides an ideal problem with which to test our Monte Carlo algorithms. While sufficiently simple to provide
closed form solutions for both the means and the variances of our Monte Carlo estimators [36], by varying the slab thickness,
the relative amounts of absorption and scattering, and the fractions of forward and backward scattering, this family of slab
problems includes examples that pose severe challenges for conventional Monte Carlo simulations and thus provides useful
tests of new ones, like the one described here.

The transport problem we treat can be described as a pair of differential equations
dW1
dx þ rtW1 ¼ rsðp11W1 þ p12W2Þ þ Q 1ðxÞ; 0 < x < T;

� dW2
dx þ rtW2 ¼ rsðp21W1 þ p22W2Þ þ Q 2ðxÞ; 0 6 x < T;

W1ð0Þ ¼ Q0;W2ðTÞ ¼ Q T ;

8><
>: ð17Þ
where
Q 0;Q T P 0; Q 1ðxÞ;Q 2ðxÞP 0;
rt P rs P 0;
p11; p12; p21;p22 P 0;
p11 þ p21 ¼ 1; p12 þ p22 ¼ 1:

ð18Þ
The constants rs;rt describe the scattering and total macroscopic cross sections, respectively, and pij is the probability of
scattering from direction j to i, where i ¼ j ¼ 1 corresponds to motion from left to right in the slab while i ¼ j ¼ 2 corresponds
to motion from right to left. The function W1 thus describes left-to-right-moving radiation and W2 describes right-to-left-
moving radiation. Formulas for the solutions of such problems may be found, for example, in [36].

The problem chosen here describes a tissue optics application in which photons are introduced through a laser light
source at one end of 1 cm of tissue with typical physical characteristics that are described by the input data
ra ¼ 0:01=mm; rs ¼ 0:99=mm; T ¼ 10 mm
p11 ¼ p22 ¼ 0:985; p12 ¼ p21 ¼ 0:015
Q 0 ¼ 1:0; QT ¼ 0; Q1ðxÞ ¼ Q 2ðxÞ � 0:
endre polynomials in each independent variable make an obvious choice of the basis functions BiðPÞ to begin our investigations when the variable is
over any finite interval, just as Laguerre and Hermite polynomials would be appropriate over semi-infinite or doubly infinite intervals, respectively. We
o experimented with other choices of complete orthogonal systems with results similar to those presented in this paper. In fact, no ‘‘universal” choice of
nctions will be adequate for all transport problems unless it is essentially constructed from the eigensystem of each RTE problem, which is clearly
ical for all but the simplest transport problems.
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Fig. 1. Geometric convergence for the G1 algorithm.
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The scattering of light in tissue is modeled by a very forward-peaked phase function typical for tissue. Here the average co-
sine of the scattering angle is chosen to be 0.97, for example.

The G1 solution method used in this example represents the approximate solution as a linear combination of the first 25
Legendre polynomials and the simulated measurement is represented in this case by averaging the solution6 over the final
mm of tissue. That is, we chose the function Q � in Eq. (4) as
6 In g
charact
radiatio
Q �ðxÞ ¼
1 for 9 6 x 6 10
0 otherwise

�

so that Eq. (5) becomes
Z 10

9
½W1ðxÞ þW2ðxÞ�dx ¼ :08030441;
which is the average value of the radiation intensity in the final mean free path of tissue. Fig. 1 plots E ¼ log10jRj versus the
number of adaptive stages, where the relative error, R, is
R ¼
R 10

9 ½W1ðxÞ þW2ðxÞ�dx�
R 10

9 ½ eW1ðxÞ þ eW2ðxÞ�dxR 10
9 ½W1ðxÞ þW2ðxÞ�dx

:

Fig. 1 clearly exhibits a geometric decrease in E as the number of adaptive stages increases. The geometric convergence for
this G1 algorithm ceases as the limit bW (Eq. (12)) is approached. Here eW is the stochastic approximation to bW determined by
the SCS algorithm (see Eq. (A.13) in the Appendix).

Values of E indicate the number of significant digits of accuracy in the estimate. The results in Fig. 1 were obtained using
10,000 random walks in each adaptive stage. Thus, the 25 stages required a total of 250,000 random walks to produce an
essentially exact result, and all 25 stages required just over 32 min of computation on a 1.6 GHz Xeon E5310 10 quad core
processor.

While near machine precision (i.e. relative error on the order of 10�15) is achievable with these G1 algorithms for suffi-
ciently simple transport problems, when more difficult problems (involving more independent variables and/or severe spa-
tial heterogeneity) are solved by these methods, their performance deteriorates. Degradation of the quality of practically
achievable G1 adaptive results occurs because: (1) The need to generate expansion coefficients for each independent variable
means that the computational burden grows exponentially with D = dim (C), C = phase space, making problems in 5 or 6
independent variables quite challenging. (2) Severely heterogeneous problems further degrade performance by requiring
separate expansions in each homogeneous subregion, further adding to the total number of coefficients needed to describe
the solution. (3) The error caused by truncating each expansion after a finite number of terms in each variable and each sub-
region is very difficult to estimate accurately (and therefore difficult to control). That is, it is difficult to predict in advance
how many terms to retain in the expansion of each independent variable in order to achieve a particular precision in the
solution. (4) Perhaps the greatest source of unpredictability about the error arises from the need to approximate numerically
eneral, the measurement is represented as a weighted integral of the RTE solution. For this simple illustration, we chose the weighting function to be the
eristic function associated with the detector region divided by the volume of that region. The measured quantity then becomes the average value of the
n solution W in the detector region.
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many integrals that arise in the computations. In SCS, these come from the integration of the reduced source, Eq. (16). All
quadratures encountered must be carried out with extremely high precision if the final tally estimates are to have essentially
unlimited accuracy, and this is clearly not a realistic practical objective.

For general RTE applications, then, either some accuracy must be sacrificed or else the cost of the G1 algorithm will in-
crease dramatically. All of these imperfections taken together mean that the G1 algorithms are not yet useful as practical
general-purpose tools for solving arbitrary transport problems. Nevertheless, they are very effective methods for solving
transport problems in one or two dimensions and they serve as useful computational yardsticks against which to measure
the performance of other, more approximate methods for more complex problems.

4. Second generation (G2) adaptive low variance methods

Dramatic gains in efficiency can be accomplished by eliminating the requirement that the solution can be represented
globally at every point of phase space by an infinite series of basis functions. The new G2 algorithms achieve this by relaxing
the requirement of unlimited precision at every location and angular orientation of the phase space. Instead, only the infor-
mation most essential to determine accurate, but not perfect, regionwise weighted averages of the solution is sought.

Suppose, then, that interest focuses only on estimating weighted integrals such as
R

V�S2 Wðr;XÞQ �ðr;XÞdrdX, of the solu-
tion with high precision (for example, to within 0.1% relative error) over a fixed, but arbitrary decomposition C ¼ [R

i¼1Ci of the
phase space. We assume that this decomposition includes one or more regions designated as ‘‘true” detector regions,7 and
that the sets fCig are pairwise disjoint: Ci \ Cj ¼ ;; i 6¼ j.

Our implementation of the G2 algorithm, named ASCS (= Averaged Sequential Correlated Sampling), finds a piecewise
constant approximation Wa of W
7 The
WaðPÞ ¼
1
jCij

Z
Ci

WðP0ÞdP0 � ai provided P 2 Ci: ð19Þ
Now let eWð0Þ
a ðPÞ denote an initial estimate of WaðPÞ obtained from a conventional Monte Carlo simulation consisting of W

random walks. For example, eWð0Þ
a ðPÞ can be obtained by averaging the total distance traveled by all simulated particles in

each subregion Ci. In [4] it is shown that this provides an unbiased estimate of the solution integral in each region. More
general weighted solution integrals can be handled similarly [28]. Replacement of the continuous function eW by the piece-
wise constant function eWð0Þ

a in Eq. (16) then produces an appropriate reduced source for the new G2 adaptive algorithm:
Sð1ÞredðPÞ � Sð0ÞðPÞ � eWð0Þ
a ðPÞ þ

Z
C

KðP;P0Þ eWð0Þ
a ðP

0ÞdP0; ð20Þ

Sð0ÞredðPÞ ¼ SðPÞ ð21Þ
and in general, the ASCS algorithm based on this idea is characterized by the iterative scheme
Sðkþ1Þ
red ðPÞ � SðkÞredðPÞ � ~wðkÞa ðPÞ þ

Z
C

KðP;P0Þ~wðkÞa ðP
0ÞdP0; k ¼ 0;1; . . . ð22Þ
where the function ~wðkÞa is the correction from stage k to the approximate solution from previous stages. The G2 adaptive
algorithm is also described in the Appendix.

We have implemented this algorithm and confirmed that it converges to estimates of the ai that depend on the coarse-
ness/fineness of the mesh imposed. The geometric learning ceases when the locally constant approximation eWaðPÞ of the
transport solution W has been stabilized. Because such an approximate solution, which is discontinuous, cannot satisfy
the original RTE pointwise (except in the trivial case that the latter is globally constant), the precision achievable is limited
by the overall quality of the decomposition of the phase space, C; that is, by the variation of the solution over each subregion
of the decomposition.

We applied this G2 algorithm to the same problem described in Section 3. In Fig. 2 we track the convergence obtained
when 2000 uniformly space subintervals Ci are used to subdivide the phase space [0,10]. The graph plots the error E as a
function of the number of G2 adaptive stages. Our G2 algorithm generated 20 adaptive stages (including a conventional
MC initial stage) to converge. In this example, with a relatively fine decomposition into 2000 subintervals, we obtain nearly
four significant digits of accuracy in the solution with an investment in computer cost of a little more than 22 min.

The geometric learning power of this G2 algorithm alone should make possible accurate solution of many RTE problems
not currently accessible by conventional MC. However, we would like to be able to increase this accuracy when it is required.
To do this, we need to be able to refine an initial decomposition of the phase space C in an intelligent way to achieve the
accuracy needed. In other words, in case the precision reached when the G2 geometric learning stops is insufficient, we want
to be able to extend it by an appropriate refinement of the phase space. What is needed, then, is an automated strategy for
determining which subregions are most important to refine, and by how much, as well as which subregions should be coa-
lesced for maximal computational efficiency. Such a strategy is described in the following section.
remaining regions of the decomposition will be those for which average RTE solution values will be determined by the algorithm.
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5. Third generation (G3) phase space refinement methods

The mechanism we propose to exhibit how to refine any phase space decomposition intelligently is to combine informa-
tion collected from particle trajectories constructed according to the original RTE with information collected from trajecto-
ries sampled according to an adjoint RTE. As we pointed out earlier, the function Cðr;XÞ defined by (7)–(10) accurately
captures the relative information value of the point ðr;XÞ with respect to the transport of radiation from the source to
the detector. Because Cðr;XÞ combines the intensity of radiation at ðr;XÞ with the likelihood that radiation at ðr;XÞ will actu-
ally reach the detector, this function quantifies the data on which intelligent grid refinement should be based.

Of course, obtaining detailed knowledge of the function Cðr;XÞ pointwise throughout the phase space poses a daunting
problem, even more so than capturing the RTE solution Wðr;XÞ everywhere since Cðr;XÞ obeys a complicated RTE that in-
volves both W and W�. However, we can quite easily estimate integrals of Cðr;XÞ over an arbitrary decomposition of C by
combining information from two G2 algorithm applications, one to obtain an approximate Wðr;XÞ solution and the other
an approximate W�ðr;XÞ solution. These regionwise constant approximations, Waðr;XÞ and W�aðr;XÞ, can then be multiplied
together in each subregion and the resulting approximation Caðr;XÞ can be integrated easily to produce the required approx-
imate integrals of Cðr;XÞ.

Suppose then that the initial decomposition of C consists of R regions: C1;C2; . . . ;CR and let Waðr;XÞ ¼ ðW1;W2; . . . ;WRÞ
and W�aðr;XÞ ¼ ðW

�
1;W

�
2; . . . ;W�RÞ denote the vector solutions obtained by applying the G2 algorithm to the forward RTE (1)

and the adjoint RTE (4), respectively. Suppose that the adjoint source Q � vanishes except in region Ci for some unique value
of i (so that Ci designates the ‘‘true” detector position and angular range of this detector). The G2 algorithm then finds a
regionwise constant approximation to W�ðr;XÞ: W�aðr;XÞ � W�i;aðr;XÞ ¼ ðW

�
i;1;W

�
i;2; . . . ;W�i;RÞ whose jth component represents

the average value of W�i ðr;XÞ over ðr;XÞ in Cj. Similarly, the G2 solution for W then finds a regionwise constant approxima-
tion Waðr;XÞ ¼ ðW1;W2; . . . ;WRÞ whose jth component represents the average value of Wðr;XÞ over ðr;XÞ in Cj. The product
Ci;j ¼ WjW

�
ij may then be integrated over Cj and interpreted as an estimate of the average information value of that region

when estimating the response of a detector placed in region Ci. Thus, the ith row of the ‘‘information matrix” Ci;j provides
the raw data to be used for intelligent grid refinement with respect to a detector in Ci.

We next describe a simple refinement strategy based on these ideas that we applied to the slab transport problem de-
scribed earlier (Eqs. (17) and (18)). After completing the G2 phase with 20 stages to compute a piecewise constant approx-
imation Waðr;XÞ ¼ ðW1;W2; . . . ;W2000Þ whose jth component represents the average value of WðxÞ over the jth subinterval,
the G2 algorithm computes a similar piecewise constant approximation W�aðr;XÞ ¼ ðW

�
1;W

�
2; . . . ;W�2000Þ whose jth component

represents the average value of W�ðxÞ over the jth subinterval and the information density function needed for the intelligent
mesh refinement strategy is formed from the component-wise product of these two vectors. The G3 algorithm, sketched
above and described more fully in the Appendix was applied in this way to produce the output graphed in Fig. 3. The mesh
refinement G3 algorithm produced a contributon-based mesh two grid consisting of a total of 7230 nonuniformly distributed
subintervals as compared with the 2000 uniform ones making up mesh 1 in the initial G2 phase. Overall, the precision in-
creased by nearly an additional two orders of magnitude.

Comparisons of the efficiency gains that result from the use of the new algorithms are noteworthy for these transport
problems. A useful indicator of efficiency in conventional MC implementations is
Eff ¼ 1
Var � t ; ð23Þ
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Fig. 3. Geometric convergence for the G3 algorithm.

Table 1
Comparison of efficiencies of each method

Method S Est. jRj r2 t Rel:Eff

exact – .803044 – – – 1
CMC 1 .792834 1:271� 10�2 82.549 33 1
G2 20 .803111 8:291� 10�5 2:403� 10�3 1341 845
G3 39 .803042 3:089� 10�6 1:19� 10�6 17273 132,529

S = number of adaptive stages, Est. = estimate of the average flux in a specified region, |R| = absolute value of the relative error, t = simulation run time (s), Rel.Eff. = relative

efficiency.
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where Var is the variance of the estimating random variable and t is the total computer time required to achieve this var-
iance. For conventional MC simulations, this measure8 is roughly independent of the number N of random samples processed
since t is linear in N and Var is inversely proportional to N, and therefore to t. However, our adaptive algorithms are designed to
produce variances that decrease exponentially with time. Thus, to compare computational efficiency of these new methods with
conventional Monte Carlo requires that we examine the amount of error reduction attained by each of the more powerful algo-
rithms and compute the run time that would be necessary for conventional Monte Carlo to achieve this amount of additional
error reduction. This last computation is predicated on the assumption that the conventional simulations converge at the rate
predicted by the central limit theorem.

To apply these ideas, the time t required for each computation was obtained by careful timing of the runs performed for
each of our methods on the same computer: a 1.6 GHz Xeon E5310 10 quad core processor. And since the initial stage of our
adaptive algorithms is simply conventional MC (the geometric learning begins with the next stage), the efficiency of conven-
tional MC (CMC) is easily obtained by identifying the time required for this initial stage, observing the error (as measured by
the standard deviation) it produced, and extrapolating to the desired precision based on the central limit theorem.

In Table 1 we compare the efficiencies of our G2 and G3 algorithms with that of conventional Monte Carlo (CMC). Thus,
for example, to achieve a variance of 2:403� 10�3 with conventional Monte Carlo when the variance it achieves in 33 sec-
onds is 82.549 would require
8 In M
82:549

2:403� 10�3 � 33 s ¼ 1:133633� 106 s;
whereas this was achieved with the G2 algorithm at a cost of 1341 seconds. The advantage factor of G2 compared with con-
ventional Monte Carlo is thus
1:133633
1341

� 106 ¼ 845:
The G3 entry in the table was computed similarly.
CNP [34] the term ‘‘Figure of Merit” (FOM) is used for this quantitative estimate of efficiency.
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From the table we see that use of the G2 algorithm alone is sufficient to estimate the detector response in this problem to
a fraction of 1% relative error, which is more than adequate for most practical applications. The addition of intelligent grid
refinement adds more than an additional order of magnitude accuracy in this problem and to achieve this with conventional
Monte Carlo would require more than 50 days of computation on the same platform.

Of course, one need not achieve six or more digits of precision to be successful modeling RTE problems. Taking into ac-
count the uncertainties inherent in the mechanisms that supply and detect radiation, 3–4 digits of precision in the simula-
tion would certainly be adequate to distinguish real effects from background noise and to validate approximate RTE
solutions. The significance of the accuracy achieved with the G2 and G3 methods, however, is that it is obtained with rela-
tively simple algorithms that do not degrade explosively in higher dimensional problems, as is the case with G1 algorithms.
Computational complexity for G2 increases roughly linearly with the number of phase space subdivisions, and not exponen-
tially with growth in the number of phase space dimensions. To determine how many subdivisions will suffice for a given
accuracy depends, of course, on the variability of the solution and adjoint solution functions over the regions of the decom-
position. While more subdivisions may be needed in regions of large solution fluctuation, the G3 strategy guarantees that
computing time is not wasted in regions for which the solutions vary only a little.

The simple grid refinement strategy described in this section is only intended to demonstrate the potential of the use of
the contributon function for optimizing computational efficiency. We intend to pursue several other strategies based on this
general idea to optimize computational efficiency.
6. Summary and conclusions

This paper establishes proof of principle and illustrates the latent power in our proposed methods over conventional
Monte Carlo methods and existing adaptive methods. In other papers now in preparation we prove the geometric conver-
gence of the G2 algorithm of this paper under rather general conditions, and we explore more focused applications of the
G2–G3 strategy to problems in both neutron transport and photon transport. We have also recently completed a new proof
of geometric convergence of our G1 algorithm under conditions more general than those presented in [23]. Each broad appli-
cation area draws attention to its own specific demands and requirements. For example, in neutron transport, the energy
variable merits special attention because the energy dependence of neutron cross sections is both complex and erratic, while
for photon transport, directional dependence is of key importance and the contributon function must be used to understand
how to vary the decomposition of the unit sphere of direction vectors with spatial location. For electron and other charged
particle transport, both energy and angle dependences are important.

We believe, however, that adaptive Monte Carlo algorithms of the sort we have developed here hold the key to making
RTE modeling truly practical. We expect that these methods will support accurate RTE modeling even in cases of highly com-
plex geometric heterogeneity and subtleties in angular variation, especially near sources and detectors or in regions of
‘‘streaming radiation”. At present, effective use of many existing Monte Carlo codes requires skillful user intervention in or-
der to optimize their utility. Moreover, the strategies adopted to achieve optimization for one RTE problem may not easily
transfer to another. Because the methods and algorithms developed here are mathematically rigorous and general rather
than ad hoc, they offer real hope of rapid, accurate and automated RTE modeling that ‘‘tunes” itself to the specific needs
of individual transport problems.
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Appendix. Implementation of G1, G2 and G3 algorithms

Problem definition

The problem described by Eqs. (17) and (18) can also be formulated as a system of coupled integral equations:
W1ðxÞ ¼ Rs p11

Z x

0
e�Rtðx�yÞW1ðyÞdyþ p12

Z x

0
e�Rtðx�yÞW2ðyÞdy

� �
þ Q 0e�Rtx þ

Z x

0
e�Rtðx�yÞQ 1ðyÞdy;

W2ðxÞ ¼ Rs p21

Z T

x
e�Rtðy�xÞW1ðyÞdyþ p22

Z T

x
e�Rtðy�xÞW2ðyÞdy

� �
þ QT e�Rt T�xð Þ þ

Z T

x
e�Rtðy�xÞQ2ðyÞdy;

ðA:1Þ
or
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W1ðxÞ ¼ Rsp11

Z x

0
e�Rtðx�yÞW1ðyÞdyþ Rsp12

Z x

0
e�Rtðx�yÞW2ðyÞdyþ S1ðxÞ;

W2ðxÞ ¼ Rsp21

Z T

x
e�Rtðy�xÞW1ðyÞdyþ Rsp22

Z T

x
e�Rtðy�xÞW2ðyÞdyþ S2ðxÞ;

ðA:2Þ
where
S1ðxÞ ¼ Q 0e�Rtx þ
Z x

0
e�Rtðx�yÞQ 1ðyÞdy;

S2ðxÞ ¼ Q T e�RtðT�xÞ þ
Z T

x
e�Rtðy�xÞQ 2ðyÞdy:

ðA:3Þ
Sequential strategy for G1 algorithm

The following algorithm is based on Eq. (A.2) above. We begin by choosing a set of basis functions in ½0; T�; ffiðxÞg10 , for
which it is natural to choose the Legendre polynomials, fpið2x=T � 1Þg10 , which form a complete orthogonal system on
the interval [�1,1]. Setting fiðxÞ ¼ pið2x=T � 1Þ, the G1 algorithm finds the solution by truncating the infinite series
W1ðxÞ ¼
X1
i¼0

aifiðxÞ;

W2ðxÞ ¼
X1
i¼0

bifiðxÞ:
ðA:4Þ
By orthogonality, we have
ai ¼
1
ci

Z T

0
W1ðxÞfiðxÞdx;

bi ¼
1
ci

Z T

0
W2ðxÞfiðxÞdx;
where
ci ¼
Z T

0
ðfiðxÞÞ2dx:
Monte Carlo methods will be applied to estimate the first M pairs of coefficients ai and bi and used to reconstruct an approx-
imate solution, cW1 � W1ðxÞ and cW2 � W2ðxÞ. The solution is obtained in stages, in each of which a predetermined number W
of random walks is processed conventionally. In the initial, or zeroth stage, we have the system of equations
wð0Þ1 ðxÞ ¼ Rsp11

Z x

0
e�Rtðx�yÞwð0Þ1 ðyÞdyþ Rsp12

Z x

0
e�Rtðx�yÞwð0Þ2 ðyÞdyþ S1ðxÞ;

wð0Þ2 ðxÞ ¼ Rsp21

Z T

x
e�Rtðy�xÞwð0Þ1 ðyÞdyþ Rsp22

Z T

x
e�Rtðy�xÞwð0Þ2 ðyÞdyþ S2ðxÞ;

ðA:5Þ
where wð0Þ1 ðxÞ and wð0Þ2 ðxÞ are assumed to have an expansion similar to that in (A.4). We then apply Monte Carlo methods to
obtain an estimate ~wð0Þ1 ðxÞ and ~wð0Þ2 ðxÞ of the exact solution, wð0Þ1 ðxÞ and wð0Þ2 ðxÞ. We next set
W1ðxÞ ¼ wð1Þ1 ðxÞ þ ~wð0Þ1 ðxÞ;
W2ðxÞ ¼ wð1Þ2 ðxÞ þ ~wð0Þ2 ðxÞ:

ðA:6Þ
We substitute (A.6) into (A.2) and obtain a system of equations for wð1Þ1 ðxÞ and wð1Þ2 ðxÞ
wð1Þ1 ðxÞ ¼ Rsp11

Z x

0
e�Rtðx�yÞwð1Þ1 ðyÞdyþ Rsp12

Z x

0
e�Rtðx�yÞwð1Þ2 ðyÞdyþ Sð1Þ1 ðxÞ;

wð1Þ2 ðxÞ ¼ Rsp21

Z T

x
e�Rtðy�xÞwð1Þ1 ðyÞdyþ Rsp22

Z T

x
e�Rtðy�xÞwð1Þ2 ðyÞdyþ Sð1Þ2 ðxÞ;

ðA:7Þ
where
Sð1Þ1 ðxÞ ¼ S1ðxÞ � ~wð0Þ1 ðxÞ þ Rsp11

Z x

0
e�Rtðx�yÞ~wð0Þ1 ðyÞdyþ Rsp12

Z x

0
e�Rtðx�yÞ~wð0Þ2 ðyÞdy;

Sð1Þ2 ðxÞ ¼ S2ðxÞ � ~wð0Þ2 ðxÞ þ Rsp21

Z x

0
e�Rtðx�yÞ~wð0Þ1 ðyÞdyþ Rsp22

Z x

0
e�Rtðx�yÞ~wð0Þ2 ðyÞdy:

ðA:8Þ
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We solve Eq. (A.7) by conventional Monte Carlo methods, and denote the solution by ~wð1Þ1 ðxÞ and ~wð1Þ2 ðxÞ. Assume that we have
obtained solutions through the k� 1st stage, ~wð0Þ1 ðxÞ; ~wð1Þ1 ðxÞ; . . . ; ~wðk�1Þ

1 ðxÞ and ~wð0Þ2 ðxÞ; ~wð1Þ2 ðxÞ; . . . ; ~wðk�1Þ
2 ðxÞ. Set
W1ðxÞ ¼ ~wð0Þ1 ðxÞ þ ~wð1Þ1 ðxÞ þ � � � þ ~wðk�1Þ
1 ðxÞ þ wðkÞ1 ðxÞ;

W2ðxÞ ¼ ~wð0Þ2 ðxÞ þ ~wð1Þ2 ðxÞ þ � � � þ ~wðk�1Þ
2 ðxÞ þ wðkÞ2 ðxÞ;

ðA:9Þ
substitute them into (A.2) and obtain equations for the k-th stage correction wðkÞ1 ðxÞ and wðkÞ2 ðxÞ:
wðkÞ1 ðxÞ ¼ Rsp11

Z x

0
e�Rtðx�yÞwðkÞ1 ðyÞdyþ Rsp12

Z x

0
e�Rtðx�yÞwðkÞ2 ðyÞdyþ SðkÞ1 ðxÞ;

wðkÞ2 ðxÞ ¼ Rsp21

Z T

x
e�Rtðy�xÞwðkÞ1 ðyÞdyþ Rsp22

Z T

x
e�Rtðy�xÞwðkÞ2 ðyÞdyþ SðkÞ2 ðxÞ;

ðA:10Þ
where
SðkÞ1 ðxÞ ¼ S1ðxÞ � ð~wð0Þ1 ðxÞ þ ~wð1Þ1 ðxÞ þ � � � þ ewðk�1Þ
1 ðxÞÞ þ Rs p11

Z x

0
e�Rtðx�yÞð~wð0Þ1 ðyÞ þ ~wð1Þ1 ðyÞ þ � � � þ ~wðk�1Þ

1 ðyÞÞdy
�

þ p12

Z x

0
e�Rtðx�yÞð~wð0Þ2 ðyÞ þ ~wð1Þ2 ðyÞ þ � � � þ ~wðk�1Þ

2 ðyÞÞdy
�
;

SðkÞ2 ðxÞ ¼ S2ðxÞ � ð~wð0Þ2 ðxÞ þ ~wð1Þ2 ðxÞ þ � � � þ ~wðk�1Þ
2 ðxÞÞ þ Rs p21

Z x

0
e�Rtðx�yÞð~wð0Þ1 ðyÞ þ ~wð1Þ1 ðyÞ þ � � � þ ~wðk�1Þ

1 ðyÞÞdy
�

þ p22

Z x

0
e�Rtðx�yÞð~wð0Þ2 ðyÞ þ ~wð1Þ2 ðyÞ þ � � � þ ~wðk�1Þ

2 ðyÞÞdy
�
:

ðA:11Þ
Then the pair
eW1ðxÞ � ~wð0Þ1 ðxÞ þ ~wð1Þ1 ðxÞ þ � � � þ ~wðkÞ1 ðxÞ;eW2ðxÞ � ~wð0Þ2 ðxÞ þ ~wð1Þ2 ðxÞ þ � � � þ ~wðkÞ2 ðxÞ
ðA:12Þ
is taken as an approximate solution of system (A.2) resulting from the kþ 1 adaptive stages and
eWðxÞ ¼ eW1ðxÞ þ eW2ðxÞ: ðA:13Þ
Sequential strategy for G2 algorithm

Assume that the interval I ¼ ½0; T� has been subdivided into a disjoint union of subintervals fIigN
i¼1,
I ¼
[N
i¼1

Ii ðA:14Þ
and, without loss of generality, we assume that the length of each subinterval is Vi > 0. Our goal with G2 algorithm is to
estimate the averages of the solution over the subintervals
ai ¼
1
Vi

Z
Ii

W1ðxÞdx;

bi ¼
1
Vi

Z
Ii

W2ðxÞdx;
ðA:15Þ
Mimicking the procedure for the G1 algorithm, we consider the zeroth stage for wð0Þ1 ðxÞ and wð0Þ2 ðxÞ
wð0Þ1 ðxÞ ¼ Rsp11

Z x

0
e�Rtðx�yÞwð0Þ1 ðyÞdyþ Rsp12

Z x

0
e�Rtðx�yÞwð0Þ2 ðyÞdyþ Sð0Þ1 ðxÞ;

wð0Þ2 ðxÞ ¼ Rsp21

Z T

x
e�Rtðy�xÞwð0Þ1 ðyÞdyþ Rsp22

Z T

x
e�Rtðy�xÞwð0Þ2 ðyÞdyþ Sð0Þ2 ðxÞ;

ðA:16Þ
where
Sð0Þ1 ðxÞ ¼ S1ðxÞ;
Sð0Þ2 ðxÞ ¼ S2ðxÞ:

ðA:17Þ
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To estimate the integrals,
að0Þi ¼
1
Vi

Z
Ii

wð0Þ1 ðxÞdx;

bð0Þi ¼
1
Vi

Z
Ii

wð0Þ2 ðxÞdx;
ðA:18Þ
we employ conventional Monte Carlo methods. Suppose that the estimated values are eað0Þi and ebð0Þi . Then define the esti-
mated solution as
~wð0Þ1;aðxÞ ¼ eað0Þi ; when x 2 Ii;

~wð0Þ2;aðxÞ ¼ ebð0Þi ; when x 2 Ii:
ðA:19Þ
Continuing to the first stage, we set
W1ðxÞ ¼ wð1Þ1 ðxÞ þ ~wð0Þ1;aðxÞ;

W2ðxÞ ¼ wð1Þ2 ðxÞ þ ~wð0Þ2;aðxÞ
ðA:20Þ
and substitute (A.20) into (A.2) to produce the equation
wð1Þ1 ðxÞ ¼ Rsp11

Z x

0
e�Rtðx�yÞwð1Þ1 ðyÞdyþ Rsp12

Z x

0
e�Rtðx�yÞwð1Þ2 ðyÞdyþ Sð1Þ1 ðxÞ;

wð1Þ2 ðxÞ ¼ Rsp21

Z T

x
e�Rtðy�xÞwð1Þ1 ðyÞdyþ Rsp22

Z T

x
e�Rtðy�xÞwð1Þ2 ðyÞdyþ Sð1Þ2 ðxÞ;

ðA:21Þ
for the correction wð1Þ1 ðxÞ and wð1Þ2 ðxÞ where
Sð1Þ1 ðxÞ ¼ S1ðxÞ � ~wð0Þ1;aðxÞ þ Rs p11

Z x

0
e�Rtðx�yÞ ewð0Þ1;aðyÞdyþ p12

Z x

0
e�Rtðx�yÞ~wð0Þ2;aðyÞdy

� �
;

Sð1Þ2 ðxÞ ¼ S2ðxÞ � ~wð0Þ2;aðxÞ þ Rs p21

Z x

0
e�Rtðx�yÞ ewð0Þ1;aðyÞdyþ p22

Z x

0
e�Rtðx�yÞ~wð0Þ2;aðyÞdy

� �
:

ðA:22Þ
From (A.21), we can estimate the integrals
að1Þi ¼
1
Vi

Z
Ii

wð1Þ1 ðxÞdx;

bð1Þi ¼
1
Vi

Z
Ii

wð1Þ2 ðxÞdx
ðA:23Þ
by conventional Monte Carlo methods. In general, having obtained ewð0Þ1;aðxÞ; ~wð1Þ1;aðxÞ; . . . ; ~wðk�1Þ
1;a ðxÞ and ~wð0Þ2;aðxÞ; ~wð1Þ2;aðxÞ;

. . . ; ~wðk�1Þ
2;a ðxÞ, set
W1ðxÞ ¼ wðkÞ1 ðxÞ þ ~wð0Þ1;aðxÞ þ � � � þ ~wðk�1Þ
1;a ðxÞ;

W2ðxÞ ¼ wðkÞ2 ðxÞ þ ~wð0Þ2;aðxÞ þ � � � þ ~wðk�1Þ
2;a ðxÞ:

ðA:24Þ
This determines a system of equations for wðkÞ1 ðxÞ and wðkÞ2 ðxÞ
wðkÞ1 ðxÞ ¼ Rsp11

Z x

0
e�Rtðx�yÞwðkÞ1 ðyÞdyþ Rsp12

Z x

0
e�Rtðx�yÞwðkÞ2 ðyÞdyþ SðkÞ1 ðxÞ;

wðkÞ2 ðxÞ ¼ Rsp21

Z T

x
e�Rtðy�xÞwðkÞ1 ðyÞdyþ Rsp22

Z T

x
e�Rtðy�xÞwðkÞ2 ðyÞdyþ SðkÞ2 ðxÞ;

ðA:25Þ
where
SðkÞ1 ðxÞ ¼ S1ðxÞ � ð~wð0Þ1;aðxÞ þ � � � þ ~wðk�1Þ
1;a ðxÞÞ þ Rs p11

Z x

0
e�Rtðx�yÞð~wð0Þ1;aðyÞ þ � � � þ ~wðk�1Þ

1;a ðyÞÞdy
�

þ p12

Z x

0
e�Rtðx�yÞð~wð0Þ2;aðyÞ þ � � � þ ~wðk�1Þ

2;a ðyÞÞdy
�
;

SðkÞ2 ðxÞ ¼ S2ðxÞ � ð~wð0Þ2;aðxÞ þ � � � þ ~wðk�1Þ
2;a ðxÞÞ þ Rs p21

Z x

0
e�Rtðx�yÞð~wð0Þ1;aðyÞ þ � � � þ ~wðk�1Þ

1;a ðyÞÞdy
�

þ p22

Z x

0
e�Rtðx�yÞð~wð0Þ2;aðyÞ þ � � � þ ~wðk�1Þ

2;a ðyÞÞdy
�
:

ðA:26Þ
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From (A.25), we can estimate the integrals
aðkÞi ¼
1
Vi

Z
Ii

wðkÞ1 ðxÞdx;

bðkÞi ¼
1
Vi

Z
Ii

wðkÞ2 ðxÞdx
ðA:27Þ
by conventional Monte Carlo methods. Finally, for each ið1 6 i 6 RÞ, we sum over all adaptive stages to obtain the
approximation
eað0Þi þ eað1Þi þ � � � þ eaðkÞi !
1

1Vi

Z
Ii

W1ðxÞdx;

ebð0Þi þ ebð1Þi þ � � � þ ebðkÞi !
1
Vi

Z
Ii

W2ðxÞdx
ðA:28Þ
for the integral (A.15).

Sequential strategy for G3 algorithm

The G3 algorithm is designed to achieve high precision automatically in solving transport problems. The idea is to use the
contributon function to reduce computational costs in low contributon regions and uniformize the effort over all subregions
based on contributon values. This idea is carried out in practice by two processes: refining the high contributon subregions
and recombining subregions in which contributon values might have become too small for optimal efficiency. We describe
the G3 strategy for general transport problems and use P;Q to denote generic state space vectors. Assume that the transport
problem is expressed by an integral equation
WðPÞ ¼
Z

C
KðP;QÞWðQÞdQ þ SðPÞ; ðA:29Þ
where KðP;QÞ is the transport kernel and SðPÞ is the source function. Then the adjoint equation is
W�ðPÞ ¼
Z

C
K�ðP;QÞW�ðQÞdyþ S�ðPÞ; ðA:30Þ
where K�ðP;QÞ ¼ KðQ ; PÞ and S�ðPÞ describes the detector. That is, the quantity we are estimating is
I ¼
Z

C
S�ðPÞWðPÞdP:
We denote the approximate solutions produced by the G2 algorithm by eWðPÞ and eW�ðPÞ, respectively. Then the approximate
contributon function is
CðPÞ ¼ eWðPÞ eW�ðPÞ: ðA:31Þ
The G3 algorithm accepts as input a global constant G which roughly indicates the desired precision in estimating the inte-
gral I. After linearly ordering the R subregions C1; . . . ;CR, the contributon integrals over all subregions are themselves orga-
nized in a linear array. That is, we set
Ci ¼
Z

Ci

CðPÞdP
and reorder the subscripts, if necessary, so that 0 6 C1 6 C2 6 � � � 6 CR. Provided it is not too small, the value C1 can be set to
G to initiate the G3 algorithm.

Refining the decomposition of the phase space

This step is applied if a subregion contains too much information, as measured by the contributon integrals. The criterion
for refining a subregion Ci is based on an examination of the integer ri ¼ Hi

G

� �
where
Hi ¼
Z

Ci

CðPÞdP ðA:32Þ
and Hi
G

h i
denotes the integer part of Hi

G . If ri < 2, we do not subdivide the subregion Ci but if ri P 2, we divide the subinterval
Ci into ri smaller subregions with equal volume. This process is continued until all subregions have been tested for
refinement.
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Recombining

This step is applied if a subregion contains too little information about the contributon function, in which case we con-
sider joining it to an adjacent subregion and retesting the newly recombined union for further possible recombination. Con-
sider the integral of CðxÞ over the ith subregion
Hi ¼
Z

Ci

CðPÞdP ðA:33Þ
and the ratio ui ¼ Hi
G (here we do not take the integer part). If ui P 1

2, we ignore the subregion Ci for now, but if ui <
1
2, we

consider combining the subregion Ci with one or more adjacent subregions. For example, if 1/2 6 ui�1 < 2 we define a
new subregion Ci�1;i ¼ Ci [ Ci�1 and test this new subregion for possible further recombination with a third subregion. This
process is continued until the refinement and recombination logic is completed. The details are too lengthy to spell out fully
here. However, the overall objective of the G3 algorithm is to optimize the computational efficiency in estimating the inte-
gral I. This relies on increasing the amount of detail needed in computationally important regions while reducing the amount
of detail needed in computationally insignificant regions. Convergence of the G3 algorithm occurs when the amount of infor-
mation extracted from each subregion (as measured by contributon integrals) is approximately uniform across all
subregions.
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